9 Arithmetic: Fractions and Percentages

9.1 Revision of Operations with Fractions

In this section we revise the basic use of fractions.

Addition

 $\frac{a}{b} + \frac{c}{b} = \frac{a+c}{b}$

Note that, for *addition* of fractions, in this way both fractions must have the *same denominator*.

Multiplication

Division

$$\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c}$$
$$= \frac{a \times d}{b \times c}$$

 $\frac{a}{b} \times \frac{c}{d} = \frac{a \times c}{b \times d}$

l'in

Example 1

Calculate:

(a)
$$\frac{3}{5} + \frac{4}{5}$$
 (b) $\frac{3}{7} + \frac{1}{3}$

Solution

(a)
$$\frac{3}{5} + \frac{4}{5} = \frac{3+4}{5}$$

 $= \frac{7}{5}$
 $= 1\frac{2}{5}$
(b) $\frac{3}{7} + \frac{1}{3} = \frac{9}{21} + \frac{7}{21}$
 $= \frac{16}{21}$

(common denominator = 21)

 $=\frac{6}{10}$

 $=\frac{3}{5}$

$$1\frac{1}{2} \times \frac{2}{5} = \frac{3}{12} \times \frac{12}{5}$$
$$= \frac{3}{5}$$

143

or

$-\frac{4}{5}$
$-\frac{4}{5}$
$\frac{3}{4} = \frac{13}{7} \times \frac{4}{3}$
$= \frac{4}{7}$
(c) $\frac{1}{9} + \frac{7}{9}$
(f) $\frac{6}{7} + \frac{5}{7}$
(i) $\frac{11}{13} - \frac{6}{13}$
1 1
(c) $\frac{1}{4} + \frac{1}{5}$
(f) $\frac{3}{4} + \frac{4}{5}$
(i) $\frac{1}{4} + \frac{5}{8}$

3.	Calc	ulate:			
	(a)	$1\frac{1}{2} + 2\frac{1}{2}$	(b)	$3\frac{3}{4} + 4\frac{1}{4}$	(c) $2\frac{3}{5} + 3\frac{1}{5}$
	(d)	$3\frac{1}{3} + 1\frac{1}{2}$	(e)	$3\frac{4}{5} + 2\frac{3}{5}$	(f) $5\frac{4}{7} + 3\frac{4}{7}$
	(g)	$4\frac{3}{4} + 2\frac{5}{8}$	(h)	$4\frac{2}{7} + 3\frac{1}{3}$	(i) $2\frac{5}{9} + 3\frac{2}{3}$
4.	Calc	ulate:			
	(a)	$2\frac{1}{2} - 1\frac{1}{2}$	(b)	$4\frac{3}{4} - 3\frac{1}{4}$	(c) $2\frac{3}{8} - 2\frac{1}{4}$
	(d)	$4\frac{5}{7} - 3\frac{6}{7}$	(e)	$3\frac{5}{8} - 1\frac{7}{8}$	(f) $4\frac{1}{3} - 3\frac{1}{2}$
	(g)	$2\frac{2}{3} - 1\frac{1}{9}$	(h)	$5\frac{3}{7} - 2\frac{1}{2}$	(i) $4\frac{1}{4} - 2\frac{2}{3}$
5.	Calc	ulate:			
	(a)	$\frac{1}{4}$ of £20		(b)	$\frac{1}{5}$ of 30 kg
	(c)	$\frac{3}{4}$ of £32		(d)	$\frac{4}{5}$ of 90 kg
	(e)	$\frac{5}{7}$ of 49 kg		(f)	$\frac{3}{8}$ of 20 m
	(g)	$\frac{3}{5}$ of £36		(h)	$\frac{7}{10}$ of 42 m
6.	Calc	ulate:			
	(a)	$\frac{1}{2} \times \frac{1}{4}$	(b)	$\frac{3}{8} \times \frac{1}{5}$	(c) $\frac{2}{3} \times \frac{3}{5}$
	(d)	$\frac{6}{7} \times \frac{2}{3}$	(e)	$\frac{4}{5} \times \frac{3}{4}$	(f) $\frac{4}{7} \times \frac{3}{5}$
	(g)	$\frac{1}{2} \times \frac{3}{4}$	(h)	$\frac{4}{9} \times \frac{3}{7}$	(i) $\frac{1}{8} \times \frac{4}{5}$
7.	Calc	ulate:			
	(a)	$\frac{1}{2} \div \frac{1}{3}$	(b)	$\frac{3}{4} \div \frac{8}{9}$	(c) $\frac{3}{5} \div \frac{4}{5}$
	(d)	$\frac{7}{10} \div \frac{1}{2}$	(e)	$\frac{3}{4} \div \frac{3}{5}$	(f) $\frac{5}{9} \div \frac{7}{8}$
	(g)	$\frac{6}{7} \div \frac{2}{3}$	(h)	$\frac{4}{7} \div \frac{3}{4}$	(i) $\frac{5}{6} \div \frac{2}{3}$

8.	Calculate	e:				
	(a) $1\frac{1}{2}$	$\frac{3}{2} \times \frac{3}{4}$	(b)	$3\frac{1}{2} \times \frac{2}{7}$	(c)	$1\frac{1}{4} \times \frac{2}{3}$
	(d) $1\frac{1}{2}$	$\frac{1}{2} \times \frac{1}{4}$	(e)	$2\frac{1}{2} \times \frac{3}{4}$	(f)	$1\frac{2}{3} \times \frac{4}{5}$
9.	Calculate	e:				
	(a) $1\frac{1}{2}$	$\frac{3}{4}$ $\div \frac{3}{4}$	(b)	$3\frac{1}{2} \div \frac{1}{2}$	(c)	$2\frac{1}{4} \div \frac{2}{3}$
	(d) $3\frac{1}{2}$	$\frac{1}{2} \div \frac{1}{4}$	(e)	$4\frac{1}{2} \div \frac{4}{5}$	(f)	$3\frac{1}{4} \div \frac{2}{3}$
10.	Calculate	e:				
	(a) $1\frac{1}{2}$	$\frac{3}{4}$	(b)	$3\frac{1}{2} \times 1\frac{4}{7}$	(c)	$\left(1\frac{1}{3}\right)^2$
11.	Calculate	e:				
	(a) $3\frac{2}{2}$	$\frac{3}{4} \div 1\frac{1}{2}$	(b)	$3\frac{1}{2} \div 1\frac{1}{4}$	(c)	$3\frac{1}{3} \div 1\frac{3}{7}$
12.	Calculate	e:				
	(a) $\frac{4}{7}$	$+1\frac{3}{4}$	(b)	$2\frac{1}{2} \times \frac{3}{7}$	(c)	$5\frac{1}{4} - 3\frac{1}{6}$
	(d) $6\frac{1}{2}$	$\frac{1}{2} \div 1\frac{6}{7}$	(e)	$1\frac{1}{2} \times 2\frac{2}{3}$	(f)	$2\frac{2}{3} - 1\frac{5}{8}$

9.2 Fractions in Context

In this section we consider the use of fractions in various contexts, and how to use the fraction key on a calculator.

ļi,

Example 1

There are 600 pupils in a school. How many school lunches must be prepared if:

- (a) $\frac{3}{4}$ of the pupils have school lunches,
- (b) $\frac{2}{3}$ of the pupils have school lunches?

9.1

or

or

Solution

(a)
$$\frac{3}{4}$$
 of 600 = $\frac{3}{4} \times 600$
= $\frac{1800}{4}$
= 450 lunches

$$\frac{3}{4}$$
 of 600 = $\frac{3}{1.4} \times 600$

= 450 lunches

(b)
$$\frac{2}{3}$$
 of 600 = $\frac{2}{3} \times 600$
= $\frac{1200}{3}$
= 400 lunches

$$\frac{2}{3}$$
 of 600 = $\frac{2}{1} \times 600$

2

= 400 lunches

Example 2

The diagram opposite shows a rectangle.

- Calculate its perimeter. (a)
- Calculate its area. (b)

Perimeter =
$$2\frac{1}{4} + 1\frac{1}{3} + 2\frac{1}{4} + 1\frac{1}{3}$$

= $2\frac{3}{12} + 1\frac{4}{12} + 2\frac{3}{12} + 1\frac{4}{12}$
= $6\frac{14}{12}$
= $7\frac{1}{6}$ m
Area = $2\frac{1}{4} \times 1\frac{1}{3}$ or Area = $2\frac{1}{4} \times 1\frac{1}{3}$
= $\frac{9}{4} \times \frac{4}{3}$ = $\frac{36}{12}$ = 3 m^2

9.2

Example 3

A loaf of bread requires $\frac{3}{4}$ kg of flour. How many loaves can be made from $6\frac{1}{2}$ kg of flour?

Solution

 $= \frac{52}{6}$ $= 8\frac{4}{6}$ $8\frac{2}{3}$ =

 $6\frac{1}{2} \div \frac{3}{4} = \frac{13}{2} \div \frac{3}{4}$

= $\frac{13}{2} \times \frac{4}{3}$

8 loaves can be made.

Many calculators have a key marked $(a^{\frac{b}{c}})$, which can be used to enter fractions.

Pressing 2 $\left(a^{\frac{b}{c}}\right)$ 3 produces the display 2 \exists 3 which represents the fraction $\frac{2}{3}$. Pressing $4 \left(\begin{array}{c} a^{b} \\ a^{c} \end{array} \right) 7 \left(\begin{array}{c} a^{b} \\ a^{c} \end{array} \right) 9$ produces the display $\left(\begin{array}{c} 4 \\ \Box \end{array} \right) 7 \left(\begin{array}{c} a^{b} \\ \bullet \end{array} \right)$, which

represents $4\frac{7}{2}$.

Note that you must write the fractions in their correct form, and not just copy the display.

(Some calculator displays may be different from this example - check the instruction booklet for your calculator.)

Exercises

1. Use your calculator to find answers for the following, making sure that they are written in the correct way:

(a)	$\frac{1}{4} + \frac{3}{7}$	(b)	$\frac{5}{7} - \frac{1}{3}$	(c)	$\frac{3}{4} \div \frac{1}{9}$
(d)	$\frac{1}{2} \div \frac{1}{6}$	(e)	$\frac{3}{4} \times \frac{7}{8}$	(f)	$\frac{4}{5} \times \frac{3}{8}$

MEP Y8 Practice Book A

(g)
$$1\frac{1}{2} \times 7$$
 (h) $2\frac{1}{2} \times \frac{3}{4}$ (i) $1\frac{5}{7} + 4\frac{2}{3}$

(j)
$$1\frac{1}{2} \div 1\frac{2}{3}$$
 (k) $6\frac{1}{4} \div \frac{3}{4}$ (l) $5\frac{1}{2} - 3\frac{2}{5}$

2. (a) Enter the fraction
$$\frac{6}{8}$$
 and then press the $=$ key on your calculator. Describe what happens.

(b) Enter the fraction
$$\frac{8}{6}$$
 and then press the $=$ key on your calculator.
Describe what happens.

What happens to each of the fractions listed below if you enter it into (c) your calculator and then press the (=) key:

 $\frac{3}{7}, \frac{9}{2}, \frac{4}{6}, \frac{6}{4}, \frac{10}{3}, \frac{3}{10}$

Calculate the area and perimeter for each of the rectangles below: 3.

4. A school has 800 pupils. The Headteacher decides to send a questionnaire to $\frac{2}{5}$ of the pupils. How many pupils receive a questionnaire?

A firm that makes floppy discs knows that $\frac{1}{20}$ of the discs they produce 5. have faults. How many faulty floppy discs would you have if you bought:

2000 discs ? 100 discs, 80 discs, (a) (b) (c)

6. A cake recipe requires
$$\frac{3}{8}$$
 kg of flour. How many cakes could be made with:
(a) 3 kg flour, (b) 6 kg flour, (c) $\frac{2}{3}$ kg flour,
(d) 1 kg flour, (e) $1\frac{1}{2}$ kg flour, (f) $1\frac{1}{3}$ kg flour.
7. The rectangle opposite has an area of
 $2\frac{3}{5}$ cm².
 $\frac{3}{4}$ cm

What is the length, *x*, of the rectangle?

- (a) 40 sheets, (b) 120 sheets,
- (c) 70 sheets, (d) 140 sheets.

How many sheets would there be in a pile of paper $4\frac{1}{2}$ cm high?

9. A bottle contains $1\frac{2}{5}$ litres of orange squash. To make one drink, $\frac{1}{200}$ of a litre of squash is needed.

How many drinks can be made from the bottle of squash?

10. Calculate the volume of the following cuboid:

9.3 Conversion of Fractions and Percentages

To convert a *fraction* to a *percentage*, *multiply* by 100.

To convert a *percentage* to a *fraction, divide* by 100 or multiply by $\frac{1}{100}$.

Example 1

Convert the following fractions to percentages:

(a)	$\frac{17}{100}$	(b)	$\frac{9}{10}$	(c)	$\frac{3}{5}$
(d)	$\frac{3}{4}$	(e)	$\frac{1}{3}$	(f)	$\frac{1}{8}$

17%

90%

60%

75%

Solution

(a)
$$\frac{17}{100} \times 100 = \frac{1700}{100}$$
 or $\frac{17}{1-400} \times 400 = \frac{170}{10}$
(b) $\frac{9}{10} \times 100 = \frac{900}{10}$ or $\frac{9}{1-40} \times 400 = \frac{90\%}{1-40}$
(c) $\frac{3}{5} \times 100 = \frac{300}{5}$ or $\frac{3}{1-5} \times 100 = \frac{300}{4}$
(d) $\frac{3}{4} \times 100 = \frac{300}{4}$ or $\frac{3}{1-4} \times 100 = \frac{300}{3}$
(e) $\frac{1}{3} \times 100 = \frac{100}{3}$
 $= 33\frac{1}{3}\%$
(f) $\frac{1}{8} \times 100 = \frac{100}{8}$
 $= 12\frac{4}{8}$

1's

Example 2

Convert these percentages to fractions:

 $= 12\frac{1}{2}\%$

(a)	30%	(b)	80%	(c)	45%
(d)	6%	(e)	$16\frac{1}{2}\%$	(f)	$62\frac{1}{2}\%$

Solution

(a)
$$30\% = \frac{30}{100}$$

= $\frac{3}{10}$

(b)
$$80\% = \frac{80}{100}$$

 $= \frac{8}{10}$
(c) $45\% = \frac{45}{100}$
 $= \frac{9}{20}$
(d) $6\% = \frac{6}{100}$
 $= \frac{3}{50}$
(e) $16\frac{1}{2}\% = 16\frac{1}{2} \times \frac{1}{100}$
 $= \frac{33}{2} \times \frac{1}{100}$
 $= \frac{33}{200}$
(f) $62\frac{1}{2}\% = 62\frac{1}{2} \times \frac{1}{100}$
 $= \frac{125}{2} \times \frac{1}{100}$
 $= \frac{5}{8}$

1's

F

Example 3

A football team is based on a squad of 20 players. In one season 8 players are shown a red or yellow card.

- (a) What percentage of the squad is shown a red or yellow card?
- (b) What percentage of the squad is *not* shown a red or yellow card?

Solution

(a)
$$\frac{8}{20} \times 100 = \frac{800}{20}$$
 or $\frac{8}{1-20} \times 100 = 40\%$
= 40%

(b)
$$100 - 40 = 60\%$$

Ex	ercis	ses				
1.	Con	vert the following pe	rcenta	ges to fractions:		
	(a)	50%	(b)	75%	(c)	40%
	(d)	25%	(e)	20%	(f)	10%
	(g)	8%	(h)	58%	(i)	36%
	(j)	64%	(k)	76%	(1)	12%
2.	Con	vert the following fra	octions	to percentages:		
	(a)	$\frac{7}{10}$	(b)	$\frac{1}{2}$	(c)	$\frac{1}{4}$
	(d)	$\frac{3}{4}$	(e)	$\frac{7}{20}$	(f)	$\frac{6}{25}$
	(g)	$\frac{19}{20}$	(h)	$\frac{17}{25}$	(i)	$\frac{3}{5}$
	(j)	$\frac{1}{5}$	(k)	$\frac{11}{20}$	(1)	$\frac{7}{50}$
3.	Con	vert the following pe	rcenta	ges to fractions:		
	(a)	$12\frac{1}{2}\%$	(b)	$66\frac{2}{3}\%$	(c)	$33\frac{1}{3}\%$
	(d)	$14\frac{1}{2}\%$	(e)	$18\frac{1}{2}\%$	(f)	$4\frac{1}{4}\%$
4.	Con	vert these fractions to	o perce	entages:		
	(a)	$\frac{1}{8}$	(b)	$\frac{1}{6}$	(c)	$\frac{3}{8}$
	(d)	$\frac{47}{200}$	(e)	$\frac{61}{200}$	(f)	$\frac{2}{3}$
5.	In a team	class of 25 pupils the . What percentage of	ere are of the c	8 individuals who p class play in the hock	lay in tey tea	the school hocke m?

6. Halim scores 32 out of 80 in a test. Express his score as a percentage.

9.3		MEP Y8 Practice Book A						
	7.	An athlete has completed 250 m of a 400 m race. What percentage of the distance has the athlete run?						
	8.	A double decker bus has 72 seats; there are 18 empty seats on the bus.						
		(a) What percentage of the seats are empty?						
		(b) What percentage of the seats are being used?						
	9.	Andy buys a bag of 12 apples at a supermarket; there are 4 bruised apples in the bag.						
		(a) What percentage of the apples are bruised?						
		(b) What percentage of the apples are <i>not</i> bruised?						
	10.	Jason took 4 tests at school and his results are given below:						
		Science 60 out of 80						
		Maths 75 out of 100						
		<i>English</i> 38 out of 50						
		French 28 out of 40						
		(a) Express his score for each test as a percentage.						
		(b) Write down his average percentage score for the 4 tests.						
9.4	Fi	nding Percentages						

In this section we revise finding percentages of quantities.

(inj

Example 1

Calculate 20% of £120.

Solution

20% of £120 =
$$\frac{20}{100} \times 120$$

= $\frac{2}{10} \times 120$
= £24

Example 2

Calculate 75% of 48 kg.

Solution

75% of 48 kg =
$$\frac{75}{100} \times 48$$

= $\frac{3}{4} \times 48$
= 36 kg

Value Added Tax (VAT) is added to the price of many products; in the UK it is currently $17\frac{1}{2}$ %. An interesting way to calculate $17\frac{1}{2}$ % is to use the fact that $17\frac{1}{2} = 10 + 5 + 2\frac{1}{2}$; this is illustrated in the next example.

Example 3

A bike costs £180 before VAT is added. How much VAT must be added to the cost of the bike, if VAT is charged at $17\frac{1}{2}\%$?

Solution

10% of £180 = £18

$$2\frac{1}{2}\%$$
 of £180 = £4.50

5% of $\pounds 180 = \pounds 9$

$$17\frac{1}{2}\%$$
 of £180 = £18 + £9 + £4.50
= £31.50

MEP Y8 Practice Book A

9.4

1.00.1

Ex	xercises					
1.	Calculate:					
	(a) 50% of £22 (b) 10% of 70 m (c)	25% of £60				
	(d) 30% of 80 m (e) 60% of £40 (f)	90% of 50 kg				
	(g) 75% of £30 (h) 25% of 6 kg (i)	30% of 32 kg				
	(j) 16% of £40 (k) 70% of 8 m (l)	35% of £20				
2.	Use the method of Example 3 to calculate the VAT that mu	st be added to the				
	following prices at a rate of $17\frac{1}{2}\%$:					
	(a) £200 (b) £300 (c)	£40				
	(d) £30 (e) £28 (f)	£38				
3.	(a) Calculate $17\frac{1}{2}\%$ of £25					
	(b) Describe the most sensible way to give your answer.					
4.	Calculate $17\frac{1}{2}$ % of the following amounts, giving your an degree of accuracy:	nswers to a sensible				
	(a) £15 (b) £75 (c)	£7				
5.	Use a method similar to Example 3 to calculate 15% of £12	20.				
6.	A computer costs £900, but $17\frac{1}{2}$ % VAT must be added to t	his price.				
	(a) Calculate $17\frac{1}{2}\%$ of £900.					
	(b) Calculate the total cost of the computer.					
7.	A company employs 240 staff. The number of staff is to be increased by 20%. How many <i>new</i> staff will the company employ?					
8.	A bike costs £186. The price is to be reduced by $33\frac{1}{3}\%$ in	a sale.				
	(a) Calculate how much you would save by buying the b	ike in the sale.				
	(b) How much would you pay for the bike in the sale?					
9.	In a school there are 280 pupils in Year 7. 85% of these pu Alton Towers. How many pupils go on the trip?	pils go on a trip to				
10.	Alec scores 75% on a test with a maximum of 56 marks. H does Alec score in the test?	Iow many marks				

9.5 Increasing and Decreasing Quantities by a Percentage

When increasing or decreasing by a percentage there are two possible approaches: one is to find the actual increase or decrease and to add it to, or subtract it from, the original amount. The second approach is to use a simple multiplication. For example, to increase by 20%, multiply by 1.2. We can illustrate this by considering a price, say $\pounds p$, that increases by 20%.

The increase is $\pounds p \times \frac{20}{100} = \pounds 0.2 p$

so the new price is

 $\pounds p + \pounds 0.2p = \pounds (1+0.2)p$

= £1.2*p*

and we can see that a 20% increase is equivalent to multiplying by 1.2 to get the new price.

Note that

$$100\% + 20\% = 120\% \implies \frac{120}{100} = 1.2$$

Similarly, a decrease of 20% is equivalent to

$$100\% - 20\% = 80\% \implies \frac{80}{100} = 0.8$$

i.e. a multiplication by 0.8.

Example 1

The price of a jar of coffee is $\pounds 2.00$. Calculate the new price after an increase of 10%.

Solution

10% of £2.00 = $\frac{10}{100} \times 2$ or100% + 10% = 110%,= £0.2so multiply by 1.1New price = 2 + 0.2New price = 1.1 × £2= £2.20= £2.20

9.5

(in

Example 2

In a sale, the price of a TV is reduced by 40%. What is the sale price if the original price was \pounds 170.

Solution

 40% of £170
 =
 $\frac{40}{100} \times 170$ or
 100% - 40% = 60%,

 =
 £68
 so multiply by 0.6

 Sale price
 =
 170 - 68

 =
 £102
 =

 £102
 =
 £102

(i)

Example 3

Jared earns £24 each week by working in a shop. His wages are to be increased by 5%. How much will he then earn each week?

Solution

5% of £24	$= \frac{5}{100} \times 24$	or	100% + 5% = 105%,
	= £1.20		so multiply by 1.05
New wages	= 24 + 1.20		New wages = 1.05×24
	= £25.20		= £25.20

Exercises

1

(a) £40 (b) £136 (c) £20	262

2.	Redu	uce the following pri	ces by	20%:		
	(a)	£50	(b)	£92	(c)	£340

- 3. (a) Increase 40 m by 30% (b) Increase £60 by 5%
 - (c) Increase £66 by 20%
 - (e) Increase £1000 by 30%
 - (g) Reduce 70 kg by 5%
 - (i) Increase 40 m by 7%
- (d) Increase 80 kg by 40%(f) Decrease £60 by 25%
- (h) Reduce £90 by 15%
- (j) Increase £18 by 4%

- 4. A computer costs £600. In a sale there is a 20% discount on the price of the item. Calculate the sale price of the computer.
- 5. A shopkeeper increases all the prices in his shop by 4%. What is the new price of each of the items below? Give your answers to the nearest penny.

Box of chocolates	£3
Bag of flour	75p
Packet of sweets	50p
Tin of beans	20p
Can of drink	45p

6. A CD player costs £90. In a sale the price is reduced by 25%. Calculate the sale price.

7. A certain type of calculator costs £8. A teacher buys 30 of these calculators for her school and is given a 20% discount. How much does she pay in total?

8. Add $17\frac{1}{2}$ % VAT to the following prices, giving your answers to the nearest pence:

(a) £400 (b) £22 (c) £65

- 9. The population of a town is 120 000. What is the total population of the town after a 5% increase?
- 10. Hannah invests £800 in a building society. Every year 5% interest is added to her money.
 - (a) Explain why, after 2 years she has £882 in her account.
 - (b) How much money does she have after 5 years? (Give your answer to the nearest pence.)
- 11. Andrew has £100 to invest in a building society. At the end of each year, 10% interest is added to his investment.
 - (a) What is the multiplier that can be used each year to calculate the new amount in the account?
 - (b) Show that the multiplier for 2 years is 1.21.
 - (c) What is the multiplier for *n* years?
 - (d) How many years does it take to *double* the £100 investment?

9.6 Finding the Percentage Increase and Decrease

When a quantity increases, we can find the percentage increase using this formula:

Percentage *increase* = $\frac{\text{increase}}{\text{original amount}} \times 100$

Similarly,

Percentage decrease = $\frac{\text{decrease}}{\text{original amount}} \times 100$

Example 1

The price of a drink increases from 40p to 45p. What is the percentage increase?

Solution

Increase = 45p - 40p= 5pPercentage increase = $\frac{5}{40} \times 100$ = $\frac{25}{2}$ = 12.5%

Example 2

The number of pupils in a school increases from 820 to 861. Calculate the percentage increase.

Solution

Increase = 861 - 820= 41 pupils

Percentage increase =
$$\frac{41}{820} \times 100$$

= 5%

Example 3

Although the lion is thought of as an African animal, there is a small population in India and elsewhere in Asia. The number of lions in India decreased from 6000 to 3900 over a 10-year period. Calculate the percentage decrease in this period.

Solution

Decrease = 6000 - 3900

= 2100 lions

Percentage decrease = $\frac{2100}{6000} \times 100$ = 35%

Example 4

The price of cheese, per kg, is increased from ± 3.26 to ± 3.84 . What is the percentage increase?

Solution

Increase = $\pounds 3.84 - \pounds 3.26$ = $\pounds 0.58$

Percentage increase = $\frac{0.58}{3.26} \times 100$

= 17.8% to 1 decimal place

Note: You might find it easier to work through the example in pence, but note that *all* quantities must be expressed in pence.

Increase =
$$(384 - 326)p$$

= 58p
Percentage increase = $\frac{58}{326} \times 100$
= 17.8% to 1 decimal place

(i)

Example 5

In a sale, the price of a bike is reduced from $\pounds 180$ to $\pounds 138$. Calculate the percentage reduction in price, correct to 1 decimal place.

Solution

Reduction = 180 - 138= £42

Percentage reduction = $\frac{42}{180} \times 100$ = 23.3% to 1 decimal place.

Exercises

- 1. The price of a school lunch increases from £1.40 to £1.54. Calculate the percentage increase in the price.
- 2. A television priced at £500 is reduced in price to £400 in a sale. Calculate the percentage reduction in the price of the television.
- 3. The price of a car increases from £8000 to £8240. What is the percentage increase in the price of the car?
- 4. A shopkeeper buys notepads for 60p each and sells them for 80p each. What percentage of the selling price is profit?
- 5. The value of an antique clock increases from £300 to £345. Calculate the percentage increase in the value of the clock.
- 6. The number of books in a school library is increased from 2220 to 2354. What is the percentage increase in the number of books?
- 7. The height of a tomato plant increases from 80 cm to 95 cm. Calculate the percentage increase in the height, correct to 1 decimal place.
- 8. The price of a bus fare is reduced from 55p to 40p. Calculate the percentage reduction in the price of the bus fare, correct to 1 decimal place.
- 9. The mass of a person on a diet decreases from 75 kg to 74 kg. Calculate the percentage reduction in their mass, correct to 3 significant figures.

- 10. Jasmine invests £250 in a building society. After the first year her account contains £262.50. After the second year it contains £280.88. Calculate the percentage increase of the amount in her account:
 - (a) during the first year,
 - (b) during the second year,
 - (c) over the two years.

Give your answers correct to 2 decimal places.

9.7 Reverse Percentage Calculations

The process of adding a percentage to a quantity can be reversed.

For example, if the cost of a portable TV is £141 including $17\frac{1}{2}$ % VAT, the cost *before* adding the VAT can be found. The multiplier in this example is 1.175, as the price is made up of 100% + 17.5% = 117.5%, which is equivalent to multiplying by

$$\frac{117.5}{100} = 1.175$$

Original price
$$\xrightarrow{\times 1.175}$$
 £141
£120 $\xleftarrow{\div 1.175}$ £141

lin

Example 1

Jane's salary was increased by 10% to £9350. What was her original salary?

Solution

100% + 10% = 110%,

which =
$$\frac{110}{100}$$
 = 1.1

Therefore Jane's original salary would have been multiplied by 1.1 to give £9350. So to calculate her original salary, divide by 1.1.

£9350

Original salary $\xrightarrow{\times 1.1}$

£8500 ÷ 1.1 £9350

Example 2

In a sale, the price of a video recorder is reduced by 22% to £218.40. How much money would you save by buying the video recorder in the sale?

Solution

100% - 22% = 78% $=\frac{78}{100}$ = 0.78

The original price would have been multiplied by 0.78 to get the sale price. So divide by 0.78 to find the original price.

 $\times 0.78$ Original price £218.40

÷ 0.78 £280 £218.40

Saving = Original price - Sale price

= £280 - £218.40

$$=$$
 £61.60

Example 3

The cost of an order, including VAT at $17\frac{1}{2}$ %, is £274.95. Calculate the cost of the order without VAT.

Solution

×1.175 Original cost £274.95

÷ 1.175 £274.95 £234

Cost of the order without VAT is $\pounds 234.00$.

Exercises

1. In a sale the prices of all the clothes in a shop are reduced by 20%. Calculate the original prices of the items below:

Item	Sale Price
Jeans	£36
Coat	£56
Shirt	£14

- 2. The price of a car is increased by 4% to £12 480. What was the original price?
- 3. The amount that Jason earns for his paper round is increased by 2% to £21.93 per week. How much *extra* money does Jason now get each week?
- 4. A special value packet of breakfast cereal contains 25% more than the standard packet. The special value packet contains 562.5 grams of cereal. How much does the *standard* packet contain?
- 5. The bill for repairing a computer is £29.38 which includes VAT at $17\frac{1}{2}$ %. What was the bill before the VAT was added?
- 6. The height of a plant increases by 18%, to 26 cm. Calculate the original height of the plant, correct to the nearest cm.
- 7. A 3.5% pay rise increases Mr Smith's annual salary to £21 735. What was his original salary?
- 8. The price of a bike in a sale is £145. If the original price has been reduced by $12\frac{1}{2}\%$, what was the original price? (Give your answer to the nearest pence.)
- 9. Alice carries out an experiment to record how quickly plants grow. One plant increases in height from 12.0 cm to 13.8 cm in one week. A second plant increases by the same percentage to 16.1 cm. What was the original height of the second plant?
- James buys a computer. The seller reduces the price by 30% and adds VAT at 17.5%. If James pays £1551 for the computer, what was its original price? (Give your answer to the nearest pence.)